Skip to content

Get Users

The Get Users API allows you to retrieve information about all users or filter by user type (NATIVE or SAML) in EPMware.

Overview

This endpoint provides a way to list all users in the system with their details, including username, name, email, status, and type. It's useful for user management, auditing, and reporting purposes.

Endpoint Details

URL Structure

GET /service/api/security/users

Full URL Example

https://demo.epmwarecloud.com/service/api/security/users

Method

GET

Parameters

Parameter Type Required Default Description
userType Query No All Filter by user type (NATIVE or SAML)
pageSize Query No 10000 Number of results per page

Request Examples

Using curl

# Get all users
curl GET 'https://demo.epmwarecloud.com/service/api/security/users' \
  -H 'Authorization: Token 15388ad5-c9af-4cf3-af47-8021c1ab3fb7'

# Get only NATIVE users
curl GET 'https://demo.epmwarecloud.com/service/api/security/users?userType=NATIVE' \
  -H 'Authorization: Token 15388ad5-c9af-4cf3-af47-8021c1ab3fb7'

# Get only SAML users
curl GET 'https://demo.epmwarecloud.com/service/api/security/users?userType=SAML' \
  -H 'Authorization: Token 15388ad5-c9af-4cf3-af47-8021c1ab3fb7'

# Get with custom page size
curl GET 'https://demo.epmwarecloud.com/service/api/security/users?pageSize=500' \
  -H 'Authorization: Token 15388ad5-c9af-4cf3-af47-8021c1ab3fb7'

Using Python

import requests
from typing import List, Dict, Optional

def get_users(base_url: str, token: str, user_type: Optional[str] = None, 
              page_size: int = 10000) -> List[Dict]:
    """
    Retrieve users from EPMware

    Args:
        base_url: EPMware base URL
        token: Authentication token
        user_type: Filter by NATIVE or SAML (optional)
        page_size: Number of results per page

    Returns:
        list: List of user dictionaries
    """
    url = f"{base_url}/service/api/security/users"

    headers = {
        'Authorization': f'Token {token}'
    }

    params = {}
    if user_type:
        params['userType'] = user_type
    if page_size != 10000:
        params['pageSize'] = page_size

    response = requests.get(url, headers=headers, params=params)

    if response.status_code == 200:
        return response.json()
    else:
        raise Exception(f"Failed to get users: {response.status_code} - {response.text}")

# Usage examples

# Get all users
all_users = get_users(
    base_url="https://demo.epmwarecloud.com",
    token="15388ad5-c9af-4cf3-af47-8021c1ab3fb7"
)

print(f"Total users: {len(all_users)}")

# Get only NATIVE users
native_users = get_users(
    base_url="https://demo.epmwarecloud.com",
    token="15388ad5-c9af-4cf3-af47-8021c1ab3fb7",
    user_type="NATIVE"
)

print(f"Native users: {len(native_users)}")

# Get only SAML users
saml_users = get_users(
    base_url="https://demo.epmwarecloud.com",
    token="15388ad5-c9af-4cf3-af47-8021c1ab3fb7",
    user_type="SAML"
)

print(f"SAML users: {len(saml_users)}")

# Display user details
for user in all_users[:5]:  # First 5 users
    print(f"\nUsername: {user['userName']}")
    print(f"  Name: {user.get('firstName', '')} {user.get('lastName', '')}")
    print(f"  Email: {user.get('email', 'N/A')}")
    print(f"  Type: {user.get('userType', 'N/A')}")
    print(f"  Enabled: {user.get('enable', 'N/A')}")

Using PowerShell

function Get-EPMwareUsers {
    param(
        [Parameter(Mandatory=$true)]
        [string]$BaseUrl,

        [Parameter(Mandatory=$true)]
        [string]$Token,

        [ValidateSet("NATIVE", "SAML", "ALL")]
        [string]$UserType = "ALL",

        [int]$PageSize = 10000
    )

    $url = "$BaseUrl/service/api/security/users"

    $headers = @{
        "Authorization" = "Token $Token"
    }

    # Build query parameters
    $params = @{}
    if ($UserType -ne "ALL") {
        $params.userType = $UserType
    }
    if ($PageSize -ne 10000) {
        $params.pageSize = $PageSize
    }

    try {
        if ($params.Count -gt 0) {
            $response = Invoke-RestMethod `
                -Uri $url `
                -Method Get `
                -Headers $headers `
                -Body $params
        }
        else {
            $response = Invoke-RestMethod `
                -Uri $url `
                -Method Get `
                -Headers $headers
        }

        Write-Host "✅ Retrieved $($response.Count) users" -ForegroundColor Green

        # Display summary
        $enabledCount = ($response | Where-Object { $_.enable -eq 'Y' }).Count
        $disabledCount = ($response | Where-Object { $_.enable -eq 'N' }).Count

        Write-Host "`nUser Summary:" -ForegroundColor Cyan
        Write-Host "  Total Users: $($response.Count)"
        Write-Host "  Enabled: $enabledCount"
        Write-Host "  Disabled: $disabledCount"

        if ($UserType -eq "ALL") {
            $nativeCount = ($response | Where-Object { $_.userType -eq 'NATIVE' }).Count
            $samlCount = ($response | Where-Object { $_.userType -eq 'SAML' }).Count

            Write-Host "  Native Users: $nativeCount"
            Write-Host "  SAML Users: $samlCount"
        }

        return $response
    }
    catch {
        Write-Host "❌ Failed to get users: $_" -ForegroundColor Red
        throw
    }
}

# Usage examples

# Get all users
$allUsers = Get-EPMwareUsers `
    -BaseUrl "https://demo.epmwarecloud.com" `
    -Token "15388ad5-c9af-4cf3-af47-8021c1ab3fb7"

# Get only NATIVE users
$nativeUsers = Get-EPMwareUsers `
    -BaseUrl "https://demo.epmwarecloud.com" `
    -Token "15388ad5-c9af-4cf3-af47-8021c1ab3fb7" `
    -UserType "NATIVE"

# Display users in table format
$allUsers | Select-Object userName, firstName, lastName, email, userType, enable | Format-Table

# Export to CSV
$allUsers | Export-Csv -Path "epmware_users.csv" -NoTypeInformation

Response Format

Successful Response

[
  {
    "userName": "john.smith",
    "firstName": "John",
    "lastName": "Smith",
    "email": "john.smith@example.com",
    "enable": "Y",
    "userType": "NATIVE",
    "description": "Finance department user"
  },
  {
    "userName": "jane.doe",
    "firstName": "Jane",
    "lastName": "Doe",
    "email": "jane.doe@example.com",
    "enable": "Y",
    "userType": "SAML",
    "description": "IT administrator"
  }
]

Response Fields

Field Type Description
userName String Unique username
firstName String User's first name
lastName String User's last name
email String Email address
enable String Enable status (Y/N)
userType String User type (NATIVE/SAML)
description String User description

User Analysis and Reporting

Comprehensive User Analysis

import pandas as pd
from datetime import datetime
import json

class UserAnalyzer:
    """Analyze EPMware user data"""

    def __init__(self, base_url: str, token: str):
        self.base_url = base_url
        self.token = token

    def get_all_users(self) -> pd.DataFrame:
        """Get all users and return as DataFrame"""

        users = get_users(self.base_url, self.token)
        df = pd.DataFrame(users)

        # Add calculated fields
        if not df.empty:
            df['full_name'] = df['firstName'].fillna('') + ' ' + df['lastName'].fillna('')
            df['is_enabled'] = df['enable'] == 'Y'
            df['email_domain'] = df['email'].str.split('@').str[-1]

        return df

    def generate_user_report(self):
        """Generate comprehensive user report"""

        df = self.get_all_users()

        if df.empty:
            print("No users found")
            return

        print("📊 EPMware User Analysis Report")
        print("="*60)
        print(f"Report Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
        print("-"*60)

        # Overall statistics
        print("\n📈 Overall Statistics:")
        print(f"  Total Users: {len(df)}")
        print(f"  Active Users: {df['is_enabled'].sum()}")
        print(f"  Inactive Users: {(~df['is_enabled']).sum()}")

        # User type distribution
        print("\n👥 User Type Distribution:")
        type_counts = df['userType'].value_counts()
        for user_type, count in type_counts.items():
            percentage = (count / len(df)) * 100
            print(f"  {user_type}: {count} ({percentage:.1f}%)")

        # Email domain analysis
        print("\n📧 Top Email Domains:")
        domain_counts = df['email_domain'].value_counts().head(5)
        for domain, count in domain_counts.items():
            print(f"  {domain}: {count} users")

        # Status by user type
        print("\n🔐 Status by User Type:")
        status_pivot = pd.crosstab(df['userType'], df['enable'], margins=True)
        print(status_pivot.to_string())

        # Users without email
        no_email = df[df['email'].isna() | (df['email'] == '')]
        if not no_email.empty:
            print(f"\n⚠️ Users without email: {len(no_email)}")
            for _, user in no_email.head(5).iterrows():
                print(f"  - {user['userName']}")

        # Duplicate email check
        duplicate_emails = df[df.duplicated('email', keep=False) & df['email'].notna()]
        if not duplicate_emails.empty:
            print(f"\n⚠️ Duplicate email addresses found:")
            for email in duplicate_emails['email'].unique()[:5]:
                users_with_email = duplicate_emails[duplicate_emails['email'] == email]['userName'].tolist()
                print(f"  {email}: {', '.join(users_with_email)}")

        return df

    def export_user_data(self, format='csv'):
        """Export user data in various formats"""

        df = self.get_all_users()

        timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')

        if format == 'csv':
            filename = f"epmware_users_{timestamp}.csv"
            df.to_csv(filename, index=False)
        elif format == 'excel':
            filename = f"epmware_users_{timestamp}.xlsx"
            with pd.ExcelWriter(filename, engine='openpyxl') as writer:
                df.to_excel(writer, sheet_name='Users', index=False)

                # Add summary sheet
                summary_df = pd.DataFrame({
                    'Metric': ['Total Users', 'Active Users', 'Inactive Users', 
                              'Native Users', 'SAML Users'],
                    'Count': [
                        len(df),
                        df['is_enabled'].sum(),
                        (~df['is_enabled']).sum(),
                        (df['userType'] == 'NATIVE').sum(),
                        (df['userType'] == 'SAML').sum()
                    ]
                })
                summary_df.to_excel(writer, sheet_name='Summary', index=False)
        elif format == 'json':
            filename = f"epmware_users_{timestamp}.json"
            df.to_json(filename, orient='records', indent=2)

        print(f"📄 User data exported to: {filename}")
        return filename

    def find_users(self, search_criteria: Dict) -> pd.DataFrame:
        """Find users matching specific criteria"""

        df = self.get_all_users()

        # Apply filters
        for field, value in search_criteria.items():
            if field in df.columns:
                if isinstance(value, str):
                    # Case-insensitive string matching
                    df = df[df[field].str.contains(value, case=False, na=False)]
                else:
                    df = df[df[field] == value]

        return df

    def get_inactive_users(self, include_disabled=True):
        """Get inactive users"""

        df = self.get_all_users()

        if include_disabled:
            inactive = df[df['enable'] == 'N']
        else:
            # Additional logic for last login if available
            inactive = df[df['enable'] == 'N']

        print(f"\n🔒 Inactive Users Report")
        print("-"*40)
        print(f"Total Inactive: {len(inactive)}")

        if not inactive.empty:
            print("\nInactive Users:")
            for _, user in inactive.iterrows():
                print(f"  - {user['userName']} ({user.get('email', 'No email')})")

        return inactive

# Usage
analyzer = UserAnalyzer(
    base_url="https://demo.epmwarecloud.com",
    token="your-token-here"
)

# Generate report
df = analyzer.generate_user_report()

# Export data
analyzer.export_user_data(format='excel')

# Find specific users
contractors = analyzer.find_users({'description': 'contractor'})
print(f"\nFound {len(contractors)} contractor users")

# Get inactive users
inactive = analyzer.get_inactive_users()

User Comparison

def compare_user_lists(current_users: List[Dict], previous_users: List[Dict]):
    """Compare two user lists to identify changes"""

    current_set = {u['userName'] for u in current_users}
    previous_set = {u['userName'] for u in previous_users}

    # Find changes
    added_users = current_set - previous_set
    removed_users = previous_set - current_set
    existing_users = current_set & previous_set

    # Check for property changes
    changes = []

    current_dict = {u['userName']: u for u in current_users}
    previous_dict = {u['userName']: u for u in previous_users}

    for username in existing_users:
        current = current_dict[username]
        previous = previous_dict[username]

        user_changes = []
        for field in ['firstName', 'lastName', 'email', 'enable', 'description']:
            if current.get(field) != previous.get(field):
                user_changes.append({
                    'field': field,
                    'old': previous.get(field),
                    'new': current.get(field)
                })

        if user_changes:
            changes.append({
                'username': username,
                'changes': user_changes
            })

    # Generate report
    print("👥 User Comparison Report")
    print("="*50)

    if added_users:
        print(f"\n✅ New Users ({len(added_users)}):")
        for username in sorted(added_users):
            user = current_dict[username]
            print(f"  - {username} ({user.get('email', 'No email')})")

    if removed_users:
        print(f"\n❌ Removed Users ({len(removed_users)}):")
        for username in sorted(removed_users):
            user = previous_dict[username]
            print(f"  - {username} ({user.get('email', 'No email')})")

    if changes:
        print(f"\n🔄 Modified Users ({len(changes)}):")
        for change in changes[:10]:  # Show first 10
            print(f"  - {change['username']}:")
            for field_change in change['changes']:
                print(f"    {field_change['field']}: "
                      f"'{field_change['old']}' → '{field_change['new']}'")

    return {
        'added': list(added_users),
        'removed': list(removed_users),
        'modified': changes
    }

User Search and Filtering

class UserSearcher:
    """Advanced user search functionality"""

    def __init__(self, users: List[Dict]):
        self.users = users
        self.df = pd.DataFrame(users) if users else pd.DataFrame()

    def search(self, query: str) -> List[Dict]:
        """Search users by multiple fields"""

        if self.df.empty:
            return []

        # Search across multiple fields
        mask = (
            self.df['userName'].str.contains(query, case=False, na=False) |
            self.df['firstName'].str.contains(query, case=False, na=False) |
            self.df['lastName'].str.contains(query, case=False, na=False) |
            self.df['email'].str.contains(query, case=False, na=False) |
            self.df['description'].str.contains(query, case=False, na=False)
        )

        results = self.df[mask]
        return results.to_dict('records')

    def filter_by_email_domain(self, domain: str) -> List[Dict]:
        """Filter users by email domain"""

        if self.df.empty:
            return []

        mask = self.df['email'].str.endswith(f'@{domain}', na=False)
        results = self.df[mask]
        return results.to_dict('records')

    def filter_by_status(self, enabled: bool = True) -> List[Dict]:
        """Filter users by enable status"""

        if self.df.empty:
            return []

        status = 'Y' if enabled else 'N'
        results = self.df[self.df['enable'] == status]
        return results.to_dict('records')

    def filter_by_type(self, user_type: str) -> List[Dict]:
        """Filter users by type"""

        if self.df.empty:
            return []

        results = self.df[self.df['userType'] == user_type]
        return results.to_dict('records')

    def get_users_without_groups(self, group_data: Dict) -> List[Dict]:
        """Find users not assigned to any groups"""

        users_with_groups = set()
        for group_users in group_data.values():
            users_with_groups.update(group_users)

        all_usernames = set(self.df['userName'])
        users_without_groups = all_usernames - users_with_groups

        results = self.df[self.df['userName'].isin(users_without_groups)]
        return results.to_dict('records')

# Usage
users = get_users(base_url, token)
searcher = UserSearcher(users)

# Search for users
results = searcher.search("john")
print(f"Found {len(results)} users matching 'john'")

# Filter by domain
company_users = searcher.filter_by_email_domain("company.com")
print(f"Found {len(company_users)} users with @company.com email")

# Get enabled users only
active_users = searcher.filter_by_status(enabled=True)
print(f"Found {len(active_users)} active users")

Pagination Handler

class UserPaginator:
    """Handle paginated user retrieval"""

    def __init__(self, base_url: str, token: str):
        self.base_url = base_url
        self.token = token

    def get_all_users_paginated(self, page_size: int = 100) -> List[Dict]:
        """Get all users with pagination"""

        all_users = []
        page = 1

        while True:
            # Note: This assumes the API supports page parameter
            # Adjust based on actual API implementation
            users = self._get_page(page, page_size)

            if not users:
                break

            all_users.extend(users)

            if len(users) < page_size:
                break

            page += 1
            print(f"Retrieved page {page}, total users so far: {len(all_users)}")

        return all_users

    def _get_page(self, page: int, page_size: int) -> List[Dict]:
        """Get a single page of users"""

        # Implementation depends on API pagination support
        # This is a placeholder
        return get_users(self.base_url, self.token, page_size=page_size)

    def process_users_in_batches(self, batch_size: int, processor_func):
        """Process users in batches to manage memory"""

        page = 1
        total_processed = 0

        while True:
            users = self._get_page(page, batch_size)

            if not users:
                break

            # Process batch
            processor_func(users)
            total_processed += len(users)

            print(f"Processed batch {page}, total: {total_processed}")

            if len(users) < batch_size:
                break

            page += 1

        return total_processed

# Usage
paginator = UserPaginator(base_url, token)

# Process users in batches
def process_batch(users):
    """Process a batch of users"""
    for user in users:
        # Do something with each user
        pass

total = paginator.process_users_in_batches(
    batch_size=100,
    processor_func=process_batch
)

print(f"Processed {total} users in total")

Integration with Other Systems

Export to LDAP Format

def export_to_ldif(users: List[Dict], filename: str = 'users.ldif'):
    """Export users to LDIF format for LDAP import"""

    with open(filename, 'w') as file:
        for user in users:
            username = user['userName']

            # Write LDIF entry
            file.write(f"dn: uid={username},ou=users,dc=company,dc=com\n")
            file.write(f"objectClass: inetOrgPerson\n")
            file.write(f"objectClass: organizationalPerson\n")
            file.write(f"objectClass: person\n")
            file.write(f"objectClass: top\n")
            file.write(f"uid: {username}\n")
            file.write(f"cn: {user.get('firstName', '')} {user.get('lastName', '')}\n")
            file.write(f"givenName: {user.get('firstName', '')}\n")
            file.write(f"sn: {user.get('lastName', username)}\n")
            file.write(f"mail: {user.get('email', '')}\n")
            file.write(f"userPassword: {{SSHA}}placeholder\n")

            if user.get('description'):
                file.write(f"description: {user['description']}\n")

            file.write("\n")

    print(f"📄 Exported {len(users)} users to {filename}")

Sync with HR System

def sync_with_hr_system(epmware_users: List[Dict], hr_users: List[Dict]):
    """Sync EPMware users with HR system data"""

    # Create lookup dictionaries
    epmware_dict = {u['email']: u for u in epmware_users if u.get('email')}
    hr_dict = {u['email']: u for u in hr_users}

    updates_needed = []
    new_users = []

    for email, hr_user in hr_dict.items():
        if email in epmware_dict:
            # Check if update needed
            epm_user = epmware_dict[email]

            if (hr_user.get('firstName') != epm_user.get('firstName') or
                hr_user.get('lastName') != epm_user.get('lastName') or
                hr_user.get('department') != epm_user.get('description')):

                updates_needed.append({
                    'username': epm_user['userName'],
                    'updates': {
                        'firstName': hr_user.get('firstName'),
                        'lastName': hr_user.get('lastName'),
                        'description': f"Department: {hr_user.get('department')}"
                    }
                })
        else:
            # New user from HR
            new_users.append({
                'userName': hr_user.get('employeeId'),
                'firstName': hr_user.get('firstName'),
                'lastName': hr_user.get('lastName'),
                'email': email,
                'description': f"Department: {hr_user.get('department')}"
            })

    print(f"📊 HR Sync Summary:")
    print(f"  Updates needed: {len(updates_needed)}")
    print(f"  New users to create: {len(new_users)}")

    return updates_needed, new_users

Monitoring and Alerts

class UserMonitor:
    """Monitor user accounts and send alerts"""

    def __init__(self, base_url: str, token: str):
        self.base_url = base_url
        self.token = token

    def check_user_anomalies(self):
        """Check for user account anomalies"""

        users = get_users(self.base_url, self.token)
        anomalies = []

        for user in users:
            # Check for missing email
            if not user.get('email'):
                anomalies.append({
                    'type': 'missing_email',
                    'username': user['userName'],
                    'message': 'User has no email address'
                })

            # Check for generic usernames
            if user['userName'].lower().startswith(('test', 'temp', 'demo')):
                anomalies.append({
                    'type': 'test_account',
                    'username': user['userName'],
                    'message': 'Possible test account in production'
                })

            # Check for disabled admin accounts
            if 'admin' in user.get('description', '').lower() and user['enable'] == 'N':
                anomalies.append({
                    'type': 'disabled_admin',
                    'username': user['userName'],
                    'message': 'Admin account is disabled'
                })

        if anomalies:
            print("⚠️ User Account Anomalies Detected:")
            for anomaly in anomalies:
                print(f"  - {anomaly['username']}: {anomaly['message']}")

        return anomalies

    def generate_user_metrics(self):
        """Generate user metrics for dashboard"""

        users = get_users(self.base_url, self.token)
        df = pd.DataFrame(users)

        metrics = {
            'total_users': len(df),
            'active_users': (df['enable'] == 'Y').sum(),
            'inactive_users': (df['enable'] == 'N').sum(),
            'native_users': (df['userType'] == 'NATIVE').sum(),
            'saml_users': (df['userType'] == 'SAML').sum(),
            'users_without_email': df['email'].isna().sum(),
            'unique_email_domains': df['email'].str.split('@').str[-1].nunique(),
            'timestamp': datetime.now().isoformat()
        }

        return metrics

# Usage
monitor = UserMonitor(base_url, token)

# Check for anomalies
anomalies = monitor.check_user_anomalies()

# Get metrics
metrics = monitor.generate_user_metrics()
print("\n📊 User Metrics:")
for key, value in metrics.items():
    print(f"  {key}: {value}")

Best Practices

1. Cache User Data

import pickle
from datetime import datetime, timedelta

class UserCache:
    """Cache user data to reduce API calls"""

    def __init__(self, cache_file='user_cache.pkl', ttl_minutes=60):
        self.cache_file = cache_file
        self.ttl = timedelta(minutes=ttl_minutes)

    def get_users(self, base_url, token, force_refresh=False):
        """Get users with caching"""

        if not force_refresh:
            cached_data = self._load_cache()
            if cached_data:
                return cached_data

        # Fetch fresh data
        users = get_users(base_url, token)
        self._save_cache(users)

        return users

    def _load_cache(self):
        """Load cached data if valid"""

        try:
            with open(self.cache_file, 'rb') as file:
                cache = pickle.load(file)

                if datetime.now() - cache['timestamp'] < self.ttl:
                    print("📦 Using cached user data")
                    return cache['data']
        except (FileNotFoundError, KeyError):
            pass

        return None

    def _save_cache(self, data):
        """Save data to cache"""

        cache = {
            'timestamp': datetime.now(),
            'data': data
        }

        with open(self.cache_file, 'wb') as file:
            pickle.dump(cache, file)

        print("💾 User data cached")

2. Efficient Filtering

def filter_users_efficiently(users: List[Dict], filters: Dict) -> List[Dict]:
    """Apply multiple filters efficiently"""

    # Convert to DataFrame for efficient filtering
    df = pd.DataFrame(users)

    # Apply all filters
    mask = pd.Series([True] * len(df))

    for field, value in filters.items():
        if field in df.columns:
            if isinstance(value, list):
                mask &= df[field].isin(value)
            elif isinstance(value, str) and '*' in value:
                # Wildcard matching
                pattern = value.replace('*', '.*')
                mask &= df[field].str.match(pattern, na=False)
            else:
                mask &= df[field] == value

    return df[mask].to_dict('records')

# Usage
filtered = filter_users_efficiently(users, {
    'userType': 'NATIVE',
    'enable': 'Y',
    'email': '*@company.com'
})

3. Parallel Processing

from concurrent.futures import ThreadPoolExecutor

def process_users_parallel(users: List[Dict], processor_func, max_workers=10):
    """Process users in parallel"""

    with ThreadPoolExecutor(max_workers=max_workers) as executor:
        futures = [executor.submit(processor_func, user) for user in users]

        results = []
        for future in concurrent.futures.as_completed(futures):
            try:
                result = future.result()
                results.append(result)
            except Exception as e:
                print(f"Error processing user: {e}")

        return results

Error Handling

Common Errors

Error Cause Solution
401 Unauthorized Invalid token Verify authentication
403 Forbidden Insufficient permissions Check user permissions
500 Internal Server Error Server issue Retry with backoff

Next Steps

After retrieving users: 1. Analyze user data for insights 2. Export for reporting or backup 3. Sync with external systems 4. Monitor for anomalies